semipy.datasets.utils.split_dataset
Warning
This section is in construction.
    semipy.datasets.utils.split_dataset(dataset,
                                        weak_transform=None,
                                        strong_transform=None,
                                        valid_proportion: float = 0.0,
                                        test_proportion: float = 0.0,
                                        num_classes: Optional[int] = None)
A function to split a MultiFolderDataset object with unlabelled items into train, test and validation sets. It also has the ability to apply two sets of differents data transformations (usually a weak and a strong augmentation).
Parameters
- dataset - An iterable dataset to split.
 - weak_transform - A first 
torchvision.transforms.Composelist of data transformations. Default:None - strong_transform - A second 
torchvision.transforms.Composelist of data transformations. Default:None - valid_proportion (float) - Proportion of the validation set compared to the number of labelled samples. Default: 0.0
 - test_proportion (float) - Proportion of the test set compared to the number of labelled samples. Default: 0.0
 - num_classes (optional, [int]) - Number of classes in the dataset. Default: 
None