semipy.datasets.utils.split_dataset
Warning
This section is in construction.
semipy.datasets.utils.split_dataset(dataset,
weak_transform=None,
strong_transform=None,
valid_proportion: float = 0.0,
test_proportion: float = 0.0,
num_classes: Optional[int] = None)
A function to split a MultiFolderDataset object with unlabelled items into train, test and validation sets. It also has the ability to apply two sets of differents data transformations (usually a weak and a strong augmentation).
Parameters
- dataset - An iterable dataset to split.
- weak_transform - A first
torchvision.transforms.Compose
list of data transformations. Default:None
- strong_transform - A second
torchvision.transforms.Compose
list of data transformations. Default:None
- valid_proportion (float) - Proportion of the validation set compared to the number of labelled samples. Default: 0.0
- test_proportion (float) - Proportion of the test set compared to the number of labelled samples. Default: 0.0
- num_classes (optional, [int]) - Number of classes in the dataset. Default:
None