semipy.datasets.get_cifar
semipy.datasets.cifar.get_cifar(name='cifar10',
num_labelled=50000,
num_unlabelled=0,
valid_proportion=0.0,
path='./data',
augmentation=False,
include_labelled=False) -> dict
Downloads one of the CIFAR dataset (CIFAR-10 or CIFAR-100) from torchvision and transforms it into a Semi-Supervised dataset (with labelled and unlabelled samples).
Parameters
- name (str) - Name of the desired dataset. Should be one of (
'cifar10'
,'cifar100'
). Default:'cifar10'
- num_labelled (int) - Number of labelled items to include in the dataset. Default: 50 000
- num_unlabelled (int) - Number of unlabelled items to include in the dataset. Default: 0
- valid_proportion (float) - Size of the validation set defined by a proportion with respect to the number of labelled items. Default: 0.0
- path (str) - Path to download and store data samples. Default:
'./data'
- augmentation (bool) - To use augmentation or not when sampling in the dataset. Default:
False
- include_labelled (bool) - To include labelled items into unlabelled set as additional data. Default:
False